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Review



Hidden Markov models

- Belief network

. . . observations o € {1,2,...,m}
g—é—é— —»é; states st € {1,2,...,n}

- Parameters
aj = P(Stz1=J|St=i) transition matrix
bir = P(Or=R|St=1) emission matrix
7 = P(S1=1) initial state distribution
- Notation

Sometimes we'll write b;j(R) = bj, to avoid double
subscripts.
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Key computations in HMMs

1. How to compute the likelihood P(04,0,,...,07)?

2. How to compute the most likely hidden states argmaxz P(5|0)?

3. How to update beliefs by computing P(s¢|01, 02, ..., 0¢)?

How to estimate parameters {m;, a;, bir} that maximize the
log-likelihood of observed sequences?
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Forward Algorithm

For a particular sequence of observations {01,05,...,071},
define the matrix with elements:

Qi@ e T QT

(,Y,t — P(O’]/ 02/ o Ot, S’[:I) o u.zw (\.zz (xz.wa u.zT

an n2 e Qn, T—1 nT

The forward algorithm fills in the matrix of a;; elements one
column at a time:

ap = mbi(or)

n
Qi = Y aia;bi(0r)
=

6/33



Computing the likelihood P(04, 0, . . .,

n rows

P(O1,02, .

Sum!
11 || Q12 ap7-1 |[ear
a1 || 2 az T-1 || ear
xnl A n2 An, T—1 opT
,07)
n
> P(01,0,,...,07,57=1) ’ marginalization
P
n
> i [sum of last column]
=
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- Two hidden states (Weather): {H, C}

- Observations (Ice creams): {1,2,3}

By

[P(1 | COLD)] [5]
P@|coLp)| = | .4
P@|cop)| |.1

B,

P(1 | HOT) 2
PE|HOT) [ = |4
P(3 | HOT) 4

"Eisner, J. 2002. An interactive spreadsheet for teaching the
forward-backward algorithm.
8/33



Example - Forward Algorithm

an = mbi(o)

Qjty = Zata// (0t11)

@,(2)=.32 @,(2)=.32".12 + .02".1 = .0404

N P(HIH) * P(11H)
N (C//y 6*.2

e (7/0) RN e
Q@\ a ) = 02 ,?\\\\)\\ 0,(1) = .32*.2 + .02 25°=_069
Ay DS WO 2 L
Fe N P(CIC) P(1IC) e
N Q$ @)
. &
QA
S
04 0, 03

y
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Viterbi algorithm



The most likely sequence of hidden states

{s1,53,-.-,57}

= argmaxe, s, s P($1,52,...,57[01,02,...,07)
— aremax P(s1,52,...,57,01,02,...,07) product
BMAXs1,52,....57 P(01,07,...,07) rule
_ p no states in
= argmaxs s, . s (51752, ..., S57,01,02,..., OT) denominator
log is
= argmaxg s, o 0gP(s1,52,...,57,01,02,...,07) monotonic
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The matrix ¢*

- Definition

For a particular sequence of observations {01,05,...,071},
we define the following matrix:

y .
0 = max logP(s1,52,...,5t—1,5t=1,01,02,...,0¢)
515525455t -1
G & e b by
G Gy o By by
row
b G ﬁn*,wa Lot
- Intuition

log-probability of the t-step path of hidden states
51,50, ..., s: that best explains the observations
01, 07 0+ and ends at state S; =/ attime t

*
git
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Computing the matrix ¢*

g;kt = max |0gP(S1,52,-..,Stf‘l,St:i,OhOz,-..,Ot)
51,52504,5t—1

ly £

1, T—1 1T
*
£2 T—-1 eZT
n rows )
* *
gn T—-1 gnT

- First column (t = 1)
ﬁ:ﬁ IogP(qui, 01)

~ tog (51 =1) PCo1151 =)
= logm; + log bj(01)
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Computing the matrix ¢*

e Next columns (t > 1)

.
e

max log P(S1, - .+, St, St41=J,01, .-, 0t 41)
AREEERSE]

|'na><S masx |OgP(S-\,...,S[_1,5‘:/V,St+1:j,01,...,0t+1)
I STseSt—1

max max log {P(sq, ey St—1,5t=1,01,...,0¢t) - product rule
IS5t
P(Sts1=JIS1, .+ St—1, 5t =1,01,...,0¢) -

P(otials1, -5 St—1, St =1, Sty1=J, Om'u,Or)}

max  max Iog{P(Sq,...,st,h&:e‘,Oq,...,Ot)~
[ STseesSt—1

P(Si1 =15 =1) - P(0rs11St41 :n]

ma><S max |:|Og P(S‘\7 ey S, St =1,01, . Ot) + log aj; + log b/(0t+1):|

TeesSt—1

max {6; + log a,j} + log bj(0t41)
I
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We have shown how to efficiently compute the matrix ¢*
one column at a time, from left to right:
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Example - Viterbi (Fill ¢*)

(12)=32 (J(2)= max(.32".12, .02*.10) = .038
P(HIH) * P(11H
\Hy Ao ¢ )*2( ) Sommmmmmmmm e @
” "
4+ 0 N
Lo \\\ L
S @ £2(1) = max(.32" 20; 102":25) = 064
€ ow=02 o™ 2(1) = max(.32".20].02:25) = .
Toh £ __P(CIC) * P(1IC) e
NSRS o) 5*5
&
\QS‘;: N
01 ()2 03

\/
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Computing {st,s5,...,s%}

- Form one more matrix:
®iq(j) = arg max; [Eft + log a,-/]

Intuitively, given the observations 04,0, ..., 041,
record the most likely state at time t given that S;y1=J.

- Compute the most likely states by backtracking:

ST = argmax; [E?‘T}

fort=T—-1to1

st = Pria(siyy)
end
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Example - Viterbi (Backtrack through ¢*)

(i=382 __-- =~ o _ (32=max(32"12, .02".10) =.038

n P(HIH) *PAIH) _ o\ @
/’ - * . \\\
. /// (C//7’) »p(’ 6*.2 - L
-7 \ 2 (1 S I
-7 - Y \ C}\ T
\ Pats
7 Q§ N \ o\'?\\Y\ 3 = max(:32",20; 02%25) = .064
R L
VN Fe \___P(CIC)* P(1IC) e
W g 6 SO 5t -
\ e R
\ 2 /
\ \%@&» N /7
Q\o v /
/
~ - ’//
04 0, O3
t
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Summary of Viterbi algorithm

- Fill #* matrix from left to right:
05 = logm;+ logbi(01)
fﬁt+1 = max; |:£Tt + log G,‘j:| + log bj(0t+'|)

- Backtrack through ¢* from right to left:
ST = argmax; {E;‘T]
Sf = argmax; [ﬁ,"t + log aist*“}

- Where you've seen this before:

This algorithm is an instance of dynamic programming.
Sometimes {s7,s5,...,s7} is called the Viterbi path.
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Which of the following statements is true(in terms of asymp-
totic time complexity)?

A. The Viterbi algorithm generally runs faster than the
Forward algorithm because it finds a single most likely
sequence.

B. The Forward algorithm generally runs faster than the
Viterbi algorithm because it computes probabilities for
all possible sequences.

C. Both algorithms have similar running times.

D. The Viterbi algorithm runs slower than the Forward
algorithm due to its additional backtracking step.
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What is the running time for Viterbi algorithm?

A. 0(n)

B
C. O
D
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Learning in HMMs




Learning in HMMs

333 3

Given: one or more sequences of observations {01, 02,...,07}.
For simplicity, we'll assume just one.

Goal: estimate {m;, aj;, bjr} to maximize P(01,0z,...,071),
the likelihood of the observed data.

Assume: the cardinality n of the hidden state space is fixed.
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How do we estimate {r;, aj, bjr}?

EM Algorithm!
How EM works in general:

To re-estimate P(X;j=x|pa;=m) in the M-step,
we must compute P(X;=x, pa;=m|V) in the E-step.
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EM algorithm for HMMs

- CPTs to re-estimate:

7= P(Si=i)
aj; = P(SH :j S;:I.)
b, = P(Or=R|St=1)

- E-step in HMMs must compute:

P(S]—”O],Oz ..... OT) )

, _ special case of below (t=1)
P(Sty1=J,St=1]01,02, ..., or)
P(O:=R,S;=1|01,02,...,01) = (0, R)P(St=i|01,03,...,07)

’ How to efficiently compute these posteriors? ‘
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Computing P(S;=i|oq, ..., 07)

P(St:i,OW,Oz,...,OT)

P(S[:i|017...,OT) = P(OW o OT)
,00,...,

- Numerator

P(S:=1i,01,0,,...,07)

P(o1,...,0t,St=1) P(Ot41,...,07|St=1,01,...,0¢)
= P(01,...,01,St=1)P(0ts1,...,07|St=1) ’ conditional independence ‘
= ajP(0t41,. .., or|St=1)
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Backward Algorithm




We need one more matrix ...

Analogous to ajy = P(04,02,...,0¢t,St=1),
define ﬂiT = ’D(OTJHvOtJrZa'"7OT‘St:i)'
Bn P o Pir—1 BT
B Bn - Bor—1 Por
n rows . _ _ _ _

5m ﬁn2 ﬁn,T—W /jnT

Understand the differences between these matrices:
-« predicts observations up to and including time t.

- B predicts observations from time t + 1 to time T.
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Computing Si; = P(0t11, 042

- Last column (t =T)

Bir = P(___|ST=1) What does this mean?

Note: 3; computes the probability of the future given
St=I.

But we don't see any observations beyond time T.
Put another way, the future after time T is unspecified.

What is the probability of some unspecified future
occurring?
By definition, we set:

Bir = 1 forall ie{1,2,...,n}
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Computing

= P(0t41, Ot42, -

- Previous columns (t < T)

ﬁl[

P(0t41, 0t42, - .., 07|St=1)

n

> [P(fa,r,/\st:f) -

j=1
P(ot1|St=1,5¢11=)) -

P(Ot42,...,07|St=1,5 ‘7,/,ot+1)} product rule
n
Z{P(» =St =1) P(0t11]S: 1 =)) P(0ts3, - - ., OF|S1 —/)]

j=1

Zau (0t+1) Bj 41
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Backward algorithm

The backward algorithm fills in the matrix of 3;; elements
one column at a time:
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Computing P(S;=i|oq, ..., 07)

. P(St:i,OW,Oz,...,OT)
P(Si=ilos,....or) = P(01,04,...,07)
- Numerator

P(St:i701702,.. .,OT)

= P(O‘\,...7Ot,5t:’.)P(ot+‘\,.‘.,OT|St:I’,O‘|,..../Ot)

- P(O% Ot St= ,) P(OPHa ) OT|SE = I) ’ conditional independence ‘
= o P(0rpa, ..., or|Se=1)

= Qj ))H

Next lecture: EM with the forward-backward algorithm.
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That's all folks!
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