
CSE 150A-250A AI: Probabilistic Models

Lecture 12
Fall 2025
Trevor Bonjour
Department of Computer Science and Engineering
University of California, San Diego

Slides adapted from previous versions of the course (Prof. Lawrence, Prof. Alvarado, Prof Berg-Kirkpatrick)

1 / 33

Agenda

Review

Viterbi algorithm

Learning in HMMs

Backward Algorithm

2 / 33

Review

Hidden Markov models

• Belief network

S1 S2
. . .

O2O1

S3

O3 OT

ST

observations ot ∈ {1, 2, . . . ,m}

states st ∈ {1, 2, . . . ,n}

• Parameters

aij = P(St+1= j|St= i) transition matrix
bik = P(Ot=k|St= i) emission matrix
πi = P(S1= i) initial state distribution

• Notation

Sometimes we’ll write bi(k) = bik to avoid double
subscripts.

4 / 33

Key computations in HMMs

OT-1

S1 S2 ST-1
. . .

O2O1

S3

O3

S4

O4 OT

ST

Inference

1. How to compute the likelihood P(o1,o2, . . . ,oT)?

2. How to compute the most likely hidden states argmax~s P(~s|~o)?

3. How to update beliefs by computing P(st|o1,o2, . . . ,ot)?

Learning

How to estimate parameters {πi,aij,bik} that maximize the
log-likelihood of observed sequences?

5 / 33

Forward Algorithm

For a particular sequence of observations {o1,o2, . . . ,oT},
define the matrix with elements:

αit = P(o1,o2, . . . ,ot, St= i) n rows




α11 α12 · · · α1,T−1 α1T
α21 α22 · · · α2,T−1 α2T
...

...
...

...
...

αn1 αn2 · · · αn,T−1 αnT



The forward algorithm fills in the matrix of αit elements one
column at a time:

αi1 = πi bi(o1)

αj,t+1 =
n∑
i=1

αit aij bj(ot+1)

6 / 33

Computing the likelihood P(o1,o2, . . . ,oT)

Sum!

P(o1,o2, . . . ,oT)

=
n∑
i=1

P(o1,o2, . . . ,oT , sT= i) marginalization

=
n∑
i=1

αiT sum of last column

7 / 33

Example1

• Two hidden states (Weather): {H, C}
• Observations (Ice creams): {1, 2, 3}

1Eisner, J. 2002. An interactive spreadsheet for teaching the
forward-backward algorithm.

8 / 33

Example - Forward Algorithm

αi1 = πi bi(o1)

αj,t+1 =
n∑
i=1

αit aij bj(ot+1)

9 / 33

Viterbi algorithm

The most likely sequence of hidden states

{s∗1 , s∗2 , . . . , s∗T}

= argmaxs1,s2,...,sT P(s1, s2, . . . , sT |o1,o2, . . . ,oT)

= argmaxs1,s2,...,sT

[
P(s1, s2, . . . , sT ,o1,o2, . . . ,oT)

P(o1,o2, . . . ,oT)

]
product
rule

= argmaxs1,s2,...,sT P(s1, s2, . . . , sT ,o1,o2, . . . ,oT)
no states in
denominator

= argmaxs1,s2,...,sT logP(s1, s2, . . . , sT ,o1,o2, . . . ,oT)
log is

monotonic

11 / 33

The matrix `∗

• Definition

For a particular sequence of observations {o1,o2, . . . ,oT},
we define the following matrix:

`∗it = max
s1,s2,...,st−1

log P(s1, s2, . . . , st−1, St= i,o1,o2, . . . ,ot)

n rows




`∗11 `∗12 · · · `∗1,T−1 `∗1T
`∗21 `∗22 · · · `∗2,T−1 `∗2T
...

...
...

...
...

`∗n1 `∗n2 · · · `∗n,T−1 `∗nT


• Intuition

log-probability of the t-step path of hidden states
`∗it s1, s2, . . . , st that best explains the observations

o1,o2, . . . ,ot and ends at state St= i at time t
12 / 33

Computing the matrix `∗

`∗it = max
s1,s2,...,st−1

log P(s1, s2, . . . , st−1, St= i,o1,o2, . . . ,ot)

• First column (t = 1)

`∗i1 = log P(S1= i,o1)

= log

[
P(S1= i)P(o1|S1= i)

]
product rule

= log πi + log bi(o1) CPTs

13 / 33

Computing the matrix `∗

• Next columns (t > 1)

`∗j,t+1 = max
s1,...,st

log P(s1, . . . , st, St+1= j, o1, . . . , ot+1)

= max
i

max
s1,...,st−1

log P(s1, . . . , st−1, St= i, St+1= j, o1, . . . , ot+1)

= max
i

max
s1,...,st−1

log

[
P(s1, . . . , st−1, St= i, o1, . . . , ot) · product rule

P(St+1= j|s1, . . . , st−1, St= i, o1, . . . , ot) ·

P(ot+1|s1, . . . , st−1, St= i, St+1= j, o1, . . . , ot)
]

= max
i

max
s1,...,st−1

log

[
P(s1, . . . , st−1, St= i, o1, . . . , ot) ·

P(St+1= j|St= i) · P(ot+1|St+1= j)
]

CI

= max
i

max
s1,...,st−1

[
log P(s1, . . . , st−1, St= i, o1, . . . , ot) + log aij + log bj(ot+1)

]
= max

i

[
`∗it + log aij

]
+ log bj(ot+1)

14 / 33

Summary

We have shown how to efficiently compute the matrix `∗

one column at a time, from left to right:

`∗i1 = log πi + log bi(o1)

`∗j,t+1 = max
i

[
`∗it + log aij

]
+ log bj(ot+1)

15 / 33

Example - Viterbi (Fill `∗)

16 / 33

Computing {s∗1 , s∗2, . . . , s∗T}

• Form one more matrix:

Φt+1(j) = argmaxi

[
`∗it + log aij

]

Intuitively, given the observations o1,o2, . . . ,ot+1,
record the most likely state at time t given that St+1= j.

• Compute the most likely states by backtracking:

s∗T = argmaxi

[
`∗iT

] Max!

for t = T−1 to 1
s∗t = Φt+1(s∗t+1)

end
17 / 33

Example - Viterbi (Backtrack through `∗)

18 / 33

Summary of Viterbi algorithm

• Fill `∗ matrix from left to right:

t = 1 `∗i1 = log πi + log bi(o1)

t > 1 `∗j,t+1 = maxi

[
`∗it + log aij

]
+ log bj(ot+1)

• Backtrack through `∗ from right to left:

t = T s∗T = argmaxi

[
`∗iT

]
t < T s∗t = argmaxi

[
`∗it + log ais∗t+1

]
• Where you’ve seen this before:

This algorithm is an instance of dynamic programming.
Sometimes {s∗1 , s∗2 , . . . , s∗T} is called the Viterbi path.

19 / 33

Check in

Which of the following statements is true(in terms of asymp-
totic time complexity)?

A. The Viterbi algorithm generally runs faster than the
Forward algorithm because it finds a single most likely
sequence.

B. The Forward algorithm generally runs faster than the
Viterbi algorithm because it computes probabilities for
all possible sequences.

C. Both algorithms have similar running times.

D. The Viterbi algorithm runs slower than the Forward
algorithm due to its additional backtracking step.

20 / 33

Check in

What is the running time for Viterbi algorithm?

A. O(n)

B. O(n2)

C. O(Tn2)

D. O(T2n4)

E. O(nT)

21 / 33

Learning in HMMs

Learning in HMMs

OT-1

S1 S2 ST-1
. . .

O2O1

S3

O3

S4

O4 OT

ST

Given: one or more sequences of observations {o1,o2, . . . ,oT}.
For simplicity, we’ll assume just one.

Goal: estimate {πi,aij,bik} to maximize P(o1,o2, . . . ,oT),
the likelihood of the observed data.

Assume: the cardinality n of the hidden state space is fixed.
st ∈ {1, 2, . . . ,n}

23 / 33

How do we estimate {πi,aij,bik}?

EM Algorithm!
How EM works in general:

To re-estimate P(Xi=x|pai=π) in the M-step,
we must compute P(Xi=x,pai=π|V) in the E-step.

24 / 33

EM algorithm for HMMs

• CPTs to re-estimate:

πi = P(S1= i)
aij = P(St+1= j|St= i)
bik = P(Ot=k|St= i)

• E-step in HMMs must compute:

P(S1= i|o1,o2, . . . ,oT)
P(St+1= j, St= i|o1,o2, . . . ,oT)
P(Ot=k, St= i|o1,o2, . . . ,oT) = I(ot, k)P(St= i|o1,o2, . . . ,oT)

special case of below (t=1)︸ ︷︷ ︸

How to efficiently compute these posteriors?

25 / 33

Computing P(St= i|o1, . . . ,oT)

P(St= i|o1, . . . ,oT) =
P(St= i,o1,o2, . . . ,oT)
P(o1,o2, . . . ,oT)

product rule

• Numerator

P(St= i,o1,o2, . . . ,oT)
= P(o1, . . . ,ot, St= i)P(ot+1, . . . ,oT |St= i,o1, . . . ,ot) product rule

= P(o1, . . . ,ot, St= i)P(ot+1, . . . ,oT |St= i) conditional independence

= αit P(ot+1, . . . ,oT |St= i)

26 / 33

Backward Algorithm

We need one more matrix ...

Analogous to αit = P(o1,o2, . . . ,ot, St= i),
define βit = P(ot+1,ot+2, . . . ,oT |St= i).

n rows




β11 β12 · · · β1,T−1 β1T

β21 β22 · · · β2,T−1 β2T
...

...
...

...
...

βn1 βn2 · · · βn,T−1 βnT



Understand the differences between these matrices:
• αit predicts observations up to and including time t.
• βit predicts observations from time t + 1 to time T .

28 / 33

Computing βit = P(ot+1,ot+2, . . . ,oT |St= i)

• Last column (t = T)

βiT = P(|ST= i) What does this mean?

Note: βit computes the probability of the future given
St= i.

But we don’t see any observations beyond time T .
Put another way, the future after time T is unspecified.

What is the probability of some unspecified future
occurring?
By definition, we set:

βiT = 1 for all i ∈ {1, 2, . . . ,n}
29 / 33

Computing βit = P(ot+1,ot+2, . . . ,oT |St= i)

• Previous columns (t < T)

βit = P(ot+1, ot+2, . . . , oT |St= i)

=
n∑
j=1

P(St+1= j, ot+1, ot+2, . . . , oT |St= i) marginalization

=
n∑
j=1

[
P(St+1= j|St= i) ·

P(ot+1|St= i, St+1= j) ·

P(ot+2, . . . , oT |St= i, St+1= j, ot+1)
]

product rule

=
n∑
j=1

[
P(St+1= j|St= i) P(ot+1|St+1= j) P(ot+2, . . . , oT |St+1= j)

]
CI

=
n∑
j=1

aij bj(ot+1)βj,t+1 CPTs

30 / 33

Backward algorithm

The backward algorithm fills in the matrix of βit elements
one column at a time:

βiT = 1 for i ∈ {1, 2, . . . ,n}

βit =
n∑
j=1

aij bj(ot+1)βj,t+1

31 / 33

Computing P(St= i|o1, . . . ,oT)

P(St= i|o1, . . . ,oT) =
P(St= i,o1,o2, . . . ,oT)
P(o1,o2, . . . ,oT)

product rule

• Numerator

P(St= i,o1,o2, . . . ,oT)
= P(o1, . . . ,ot, St= i)P(ot+1, . . . ,oT |St= i,o1, . . . ,ot) product rule

= P(o1, . . . ,ot, St= i)P(ot+1, . . . ,oT |St= i) conditional independence

= αit P(ot+1, . . . ,oT |St= i)
= αit βit

Next lecture: EM with the forward-backward algorithm.

32 / 33

That’s all folks!

33 / 33

	Review
	Viterbi algorithm
	Learning in HMMs
	Backward Algorithm

